Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 52(5): 900-906, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37656634

RESUMO

Aphids (Hemiptera: Aphididae) extract nutrients from host plant phloem via stylets that facilitate salivation and sap uptake. When navigating to the phloem, aphids periodically puncture nonvascular cells and sample cell contents, but rarely cause significant cell damage. As a result, aphids are considered "stealthy" feeders. In contrast, insects that do cause damage, such as chewing herbivores, will take up host cell contents-including DNA-into their guts. Researchers can use molecular barcoding methods to identify recent host use patterns of chewing herbivores. This information is valuable for both pest management and basic ecological studies. Because of their stealthy feeding style, it was assumed that host plant DNA could not be recovered from aphids and other Sternorrhyncha. However, several recent studies document host plant DNA uptake by psyllids, which feed in a similar manner to aphids. Therefore, we hypothesized that aphids may also acquire DNA from host plants. Since aphids puncture and sample cytosol contents from cells, we predicted that aphids would be most likely to acquire DNA from chloroplasts. To test this, we performed host feeding and host transfer experiments with Myzus persicae (Sulzer), then used PCR to recover and sequence a region between the trnT and trnF genes from acquired chloroplast DNA. We found that M. persicae readily acquires chloroplast DNA, even prior to phloem contact, and that fragment sizes sufficient for host plant identification can be recovered. Our work suggests that molecular gut content analysis is a viable tool for studying aphid-host interactions.

2.
Am Nat ; 201(2): 241-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724465

RESUMO

AbstractIn eusocial insects, nestmate queens can differ in their reproductive output, causing asymmetries in the distribution of mutual benefits. However, little is known about how reproductive success is partitioned in incipiently polygynous species, which would provide clues about the evolutionary forces shaping the emergence of polygyny. Here, we leverage a recent transition from predominantly single-queen (monogyne) to multiple-queen (polygyne) colonies in an invasive yellowjacket species to investigate whether queens in incipiently polygyne colonies invest equally in reproductive effort or vary in their relative investment in each caste. We excavated nine polygyne Vespula pensylvanica colonies in Hawaii and used restriction site-associated DNA sequencing to infer the parentage of worker, male, and gyne (daughter queen) pupae from each nest comb. In four colonies with at least eight gyne pupae, a single queen produced most or all gynes. These queens had no male offspring and few worker offspring, suggesting that a subset of nestmate queens might exploit the collective benefits of newly polygyne societies. In contrast to most queens, gyne producers had offspring distributed nonrandomly across nest combs. Nestmate queens generally exhibited low relatedness levels. Our results suggest that rapid, ecologically driven transitions to polygyny among unrelated queens may, at their onset, be vulnerable to reproductive asymmetries that are likely evolutionarily unstable. More broadly, this study contributes to the understanding of social evolution by uncovering asymmetric partitioning of reproduction in a population with newly evolved polygyny and raises questions about the future trajectories of introduced populations.


Assuntos
Formigas , Vespas , Animais , Vespas/genética , Formigas/genética , Reprodução/genética , Evolução Biológica , Repetições de Microssatélites , Comportamento Social
4.
Environ Entomol ; 51(6): 1141-1149, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36178323

RESUMO

California's sage scrub habitats support a diversity of nectar and host plants for migrating and resident populations of painted lady butterflies (Vanessa cardui) throughout all seasons. North America experiences spring V. cardui migrations involving butterflies totaling in the millions in some years. These irruptive years are thought to be driven by winter weather patterns at breeding grounds near the US-Mexico border and due to their irregularity, it is difficult to study floral resource use along the migration route. Here we used the community science platform iNaturalist to quantify patterns in V. cardui nectar resource use in sage scrub over time and space during irruptive and nonirruptive years. We identified over 329 different nectaring plant species of varying functional types (72% native to California) visited by adult V. cardui, 195 of which had not been previously identified as known nectar plants for V. cardui. Vanessa cardui butterflies were observed in similar locations regardless of whether an irruptive migration occurred, indicating the presence of either sparse migrants or resident populations across California. Moreover, irruptive years were positively correlated with warmer and wetter local conditions at observation locations. Our results provide new insights into patterns of floral resource use by North American V. cardui by harnessing the power of community science data and while highlighting the factors associated with its North American migration.


Assuntos
Borboletas , Geraniaceae , Animais , Néctar de Plantas , Ecossistema , Estações do Ano , California
5.
Neotrop Entomol ; 51(5): 795-800, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35680782

RESUMO

Pollinator foraging fidelity (i.e., consistent and repeated visitation to a particular plant species or area) is poorly understood for most bee species, but is important information for both the conservation of plant and pollinator species and the ecosystem services they provide to humans. We used plant-pollinator surveys and mark-recapture of floral-visiting Hymenoptera to study the foraging fidelity and species interaction network properties of a plant-pollinator community in the tropical Andes of southern Ecuador. After marking 92 bees visiting six plant taxa along four 100-m transects between July 16th and July 31st of 2019, only honeybees were resighted at a recapture rate of 47.7% (41/86). During our surveys, we observed nine bee and two wasp taxa feeding from the flowers of 10 morphospecies of plants, and we found significantly low network nestedness and significantly high network-level specialization. Specialization (d') was also significant for honeybees and bumblebees and for three plant taxa. Overall, our findings indicated that feral, non-native honeybees in this region dominated the local plant-pollinator network, yet this species is acting as a specialist forager at the individual level. Our results suggest that honeybees may be replacing the pollination services of some native bees and wasps in the region, but more research is needed to determine the effectiveness of honeybee pollination for the local plants.


Assuntos
Ecossistema , Vespas , Animais , Abelhas , Equador , Flores , Humanos , Plantas , Polinização
6.
Oecologia ; 198(3): 773-783, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35201380

RESUMO

In human-modified landscapes, understanding how habitat characteristics influence the diversity and composition of beneficial organisms is critical to conservation efforts and modeling ecosystem services. Assessing turnover, or the magnitude of change in species composition across sites or through time, is crucial to said efforts, yet is often overlooked. For pollinators such as wild bees, variables influencing temporal turnover, particularly across seasons within a year, remain poorly understood. To investigate how local and landscape characteristics correlate with bee diversity and turnover across seasons, we recorded wild bee and flowering ornamental plant assemblages at 13 plant nurseries in California between spring and autumn over 2 years. Nurseries cultivate a broad diversity of flowering plant species that differ widely across sites and seasons, providing an opportunity to test for correlations between turnover and diversity of plants and bees. As expected, we documented strong seasonal trends in wild bee diversity and composition. We found that local habitat factors, such as increased cultivation of native plants, were positively associated with bee diversity in sweep netting collections, whereas we detected moderate influences of landscape level factors such as proportion of surrounding natural area in passive trap collections. We also detected a moderate positive correlation between the magnitude of turnover in plant species and that of bee species (as number of taxa gained) across consecutive seasons. Our results have implications for the conservation of wild bees in ornamental plant landscapes, and highlight the utility of plant nurseries for investigating hypotheses related to diversity and turnover in plant-pollinator systems.


Assuntos
Biodiversidade , Ecossistema , Animais , Abelhas , Jardins , Plantas , Polinização , Estações do Ano
7.
Ecol Appl ; 32(2): e2523, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921463

RESUMO

Recent foodborne illness outbreaks have heightened pressures on growers to deter wildlife from farms, jeopardizing conservation efforts. However, it remains unclear which species, particularly birds, pose the greatest risk to food safety. Using >11,000 pathogen tests and 1565 bird surveys covering 139 bird species from across the western United States, we examined the importance of 11 traits in mediating wild bird risk to food safety. We tested whether traits associated with pathogen exposure (e.g., habitat associations, movement, and foraging strategy) and pace-of-life (clutch size and generation length) mediated foodborne pathogen prevalence and proclivities to enter farm fields and defecate on crops. Campylobacter spp. were the most prevalent enteric pathogen (8.0%), while Salmonella and Shiga-toxin producing Escherichia coli (STEC) were rare (0.46% and 0.22% prevalence, respectively). We found that several traits related to pathogen exposure predicted pathogen prevalence. Specifically, Campylobacter and STEC-associated virulence genes were more often detected in species associated with cattle feedlots and bird feeders, respectively. Campylobacter was also more prevalent in species that consumed plants and had longer generation lengths. We found that species associated with feedlots were more likely to enter fields and defecate on crops. Our results indicated that canopy-foraging insectivores were less likely to deposit foodborne pathogens on crops, suggesting growers may be able to promote pest-eating birds and birds of conservation concern (e.g., via nest boxes) without necessarily compromising food safety. As such, promoting insectivorous birds may represent a win-win-win for bird conservation, crop production, and food safety. Collectively, our results suggest that separating crop production from livestock farming may be the best way to lower food safety risks from birds. More broadly, our trait-based framework suggests a path forward for co-managing wildlife conservation and food safety risks in farmlands by providing a strategy for holistically evaluating the food safety risks of wild animals, including under-studied species.


Assuntos
Animais Selvagens , Escherichia coli Shiga Toxigênica , Animais , Aves , Bovinos , Fazendas , Salmonella , Estados Unidos
10.
Proc Biol Sci ; 288(1955): 20211287, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34315264

RESUMO

A key conservation goal in agroecosystems is to understand how management practices may affect beneficial species, such as pollinators. Currently, broad gaps exist in our knowledge as to how horticultural management practices, such as irrigation level, might influence bee reproduction, particularly for solitary bees. Despite the extensive use of ornamental plants by bees, especially little is known about how irrigation level may interact with insecticides, like water-soluble neonicotinoids, to influence floral rewards and bee reproduction. We designed a two-factor field cage experiment in which we reared Megachile rotundata (Fabricius) (Hymenoptera: Megachilidae) on containerized ornamental plants grown under two different irrigation levels and imidacloprid treatments (30% label rate dosage of a nursery formulation or an untreated control). Lower irrigation was associated with modest decreases in nectar volume and floral abundance in untreated plants, whereas irrigation did not affect plants treated with imidacloprid. Furthermore, higher irrigation decreased the amount of imidacloprid entering nectar. Imidacloprid application strongly reduced bee foraging activity and reproduction, and higher irrigation did not offset any negative effects on bees. Our study emphasizes the impact of a nursery neonicotinoid formulation on solitary bee foraging and reproduction, while highlighting interactions between irrigation level and neonicotinoid application in containerized plants themselves.


Assuntos
Himenópteros , Inseticidas , Praguicidas , Animais , Abelhas , Jardins , Inseticidas/toxicidade , Neonicotinoides , Nitrocompostos , Néctar de Plantas
11.
PLoS One ; 16(7): e0255463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324610

RESUMO

Invasive species present a worldwide concern as competition and pathogen reservoirs for native species. Specifically, the invasive social wasp, Vespula pensylvanica, is native to western North America and has become naturalized in Hawaii, where it exerts pressures on native arthropod communities as a competitor and predator. As invasive species may alter the microbial and disease ecology of their introduced ranges, there is a need to understand the microbiomes and virology of social wasps. We used 16S rRNA gene sequencing to characterize the microbiome of V. pensylvanica samples pooled by colony across two geographically distinct ranges and found that wasps generally associate with taxa within the bacterial genera Fructobacillus, Fructilactobacillus, Lactococcus, Leuconostoc, and Zymobacter, and likely associate with environmentally-acquired bacteria. Furthermore, V. pensylvanica harbors-and in some cases were dominated by-many endosymbionts including Wolbachia, Sodalis, Arsenophonus, and Rickettsia, and were found to contain bee-associated taxa, likely due to scavenging on or predation upon honey bees. Next, we used reverse-transcriptase quantitative PCR to assay colony-level infection intensity for Moku virus (family: Iflaviridae), a recently-described disease that is known to infect multiple Hymenopteran species. While Moku virus was prevalent and in high titer, it did not associate with microbial diversity, indicating that the microbiome may not directly interact with Moku virus in V. pensylvanica in meaningful ways. Collectively, our results suggest that the invasive social wasp V. pensylvanica associates with a simple microbiome, may be infected with putative endosymbionts, likely acquires bacterial taxa from the environment and diet, and is often infected with Moku virus. Our results suggest that V. pensylvanica, like other invasive social insects, has the potential to act as a reservoir for bacteria pathogenic to other pollinators, though this requires experimental demonstration.


Assuntos
Abelhas , RNA Ribossômico 16S , Vespas , Animais , Vírus de RNA
12.
Sci Rep ; 11(1): 10087, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980970

RESUMO

Social insect colonies exhibit a variety of life history strategies, from the annual, semelparous colonies of temperate bees and wasps to the long-lived colonies of many ants and honeybees. Species introduced to novel habitats may exhibit plasticity in life history strategies as a result of the introduction, but the factors governing these changes often remain obscure. Vespula pensylvanica, a yellowjacket wasp, exhibits such plasticity in colony longevity. Multi-year (perennial) colonies are relatively common in introduced populations in Hawaii, while source populations in the western United States are typically on an annual cycle. Here, we use experiments and observational data to examine how diet, disease, nest thermal environment, and nest location influence colony longevity in a population with both annual and perennial colonies. Counter to our predictions, experimental feeding and warming did not increase colony survival in the winter in the introduced range. However, Moku Virus load and wasp colony density predicted colony survival in one year, suggesting a potential role for disease in modulating colony phenology. We also found that local V. pensylvanica colony density was positively correlated with Moku Virus loads, and that Arsenophonus sp. bacterial loads in V. pensylvanica colonies were positively associated with proximity to feral honeybee (Apis mellifera) hives, suggesting potential transmission routes for these poorly understood symbionts. The factors influencing colony longevity in this population are likely multiple and interactive. More important than food availability, we propose winter precipitation as a critical factor that may explain temporal and spatial variation in colony longevity in these invasive wasps.


Assuntos
Vírus de RNA/fisiologia , Vespas/crescimento & desenvolvimento , Vespas/virologia , Animais , Abelhas/crescimento & desenvolvimento , Ecossistema , Comportamento Alimentar , Havaí , Densidade Demográfica , Vírus de RNA/genética , Estações do Ano , Temperatura , Carga Viral , Vespas/fisiologia
14.
Curr Opin Insect Sci ; 46: 72-77, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33667693

RESUMO

Invasive species are a main driver of biodiversity loss and ecological change globally. Consequently, there is a need to understand how invaders damage ecosystems and to develop effective management strategies. Social wasps (Hymenoptera: Vespidae) include some of the world's most ecologically damaging invasive insects. In recent decades, the invasive social wasp literature has grown rapidly. This may be due in part to increased rate of introduction as well as greater public awareness of invasive wasps and their potential negative impacts on bees. Here, we investigate trends in invasive social wasp research, identifying the emergence of Vespa invasions, the mechanism-based inquiry into Vespula invasions, and the increased application of molecular methods to track invasive species through the invasion process.


Assuntos
Vespas , Animais , Abelhas , Ecossistema , Espécies Introduzidas
15.
J Econ Entomol ; 113(6): 2705-2712, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33001178

RESUMO

Bees are economically critical pollinators, but are declining broadly due to several stressors, including nontarget exposure to insecticides and deficiencies in nutrition. Understanding the simultaneous impact of stressors, particularly interactions between them, is critical to effectively conserving bees. Although behavioral effects of pesticides like neonicotinoids have received some attention in solitary bees, our understanding of how they are modulated by diet quality is limited. Furthermore, scarce data exist on what concentrations of orally ingested neonicotinoids elicit mortality in solitary bees. In a controlled exposure laboratory experiment, we investigated how diet quality, as sugar concentration, and chronic oral exposure to imidacloprid affect adult alfalfa leafcutting bees, Megachile rotundata (Fabricius). We provided individuals ad libitum with either 20 or 50% (m/m) sucrose syrups containing either 0, 30, or 300 ppb imidacloprid (measuring 0, 27, and 209 ppb via an ELISA assay). Over 5 wk, we tracked behavior and survivorship of individuals. Imidacloprid decreased survivorship in a dose-dependent fashion, but sucrose content did not affect survivorship, even in bees not fed imidacloprid. In the high imidacloprid treatment, 45% of bees were observed in a motionless supine position while still alive, with this effect appearing to be buffered against by the higher sucrose diet. Our results suggest that diets higher in sugar concentration may prevent an intermediate stage of poisoning, but do not ultimately extend longevity. In devising risk assessments for bees, it is important to consider that interactions between stressors may occur in the stages leading up to death even if survivorship is unaffected.


Assuntos
Himenópteros , Inseticidas , Animais , Abelhas , Dieta , Medicago sativa , Neonicotinoides , Nitrocompostos , Açúcares
16.
J Insect Sci ; 20(5)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021636

RESUMO

Pollinators provide a key ecosystem service vital for the survival and stability of the biosphere. Identifying factors influencing the plant-pollinator mutualism and pollinator management is necessary for maintaining a healthy ecosystem. Since healthy beehives require substantial amounts of carbohydrates (nectar) and protein (pollen) from forage plants such as clover, we must assess how resources offered by plants change under limited water conditions in order to fully understand how drought modifies the pollination mutualism. Here we document how reduced water availability leads to decreased nectar quality and quantity and decreased protein quality of pollen. Furthermore, we provide conclusive evidence that these lower quality resources lead to decreased survival and productivity in both developing honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae). The results emphasize the importance of the nutritional effects of reduced water on bees when predicting shifts of pollination mutualisms under climate change.


Assuntos
Abelhas/fisiologia , Polinização/fisiologia , Abastecimento de Água , Animais , Secas , Ecossistema , Eficiência , Comportamento Alimentar , Medicago/química , Néctar de Plantas/química , Plantas/química , Pólen/química , Análise de Sobrevida
17.
G3 (Bethesda) ; 10(10): 3479-3488, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32859687

RESUMO

Social wasps of the genus Vespula have spread to nearly all landmasses worldwide and have become significant pests in their introduced ranges, affecting economies and biodiversity. Comprehensive genome assemblies and annotations for these species are required to develop the next generation of control strategies and monitor existing chemical control. We sequenced and annotated the genomes of the common wasp (Vespula vulgaris), German wasp (Vespula germanica), and the western yellowjacket (Vespula pensylvanica). Our chromosome-level Vespula assemblies each contain 176-179 Mb of total sequence assembled into 25 scaffolds, with 10-200 unanchored scaffolds, and 16,566-18,948 genes. We annotated gene sets relevant to the applied management of invasive wasp populations, including genes associated with spermatogenesis and development, pesticide resistance, olfactory receptors, immunity and venom. These genomes provide evidence for active DNA methylation in Vespidae and tandem duplications of venom genes. Our genomic resources will contribute to the development of next-generation control strategies, and monitoring potential resistance to chemical control.


Assuntos
Vespas , Animais , Genômica , Vespas/genética
19.
J Insect Sci ; 19(5)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557288

RESUMO

Flowers may become inoculated with pathogens that can infect bees and other critical pollinators, but the mechanisms of inoculation remain unclear. During foraging, bees may regurgitate or defecate directly onto flower parts, which could inoculate flowers with pollinator pathogens and lead to subsequent disease transmission to floral visitors. We tested if captive eastern bumble bees (Bombus impatiens) (Cresson) (Hymenoptera: Apidae) defecate on floral surfaces during foraging and if flower shape played a role in the probability of defecation and the quantity of feces deposited on floral surfaces. Captive Bombus impatiens were fed a solution of fluorescent dye and sucrose, then allowed to forage freely on flowers of a variety of shapes in a flight cage. Flowers were then examined under ultraviolet light for fluorescing fecal matter. We found that bumble bees did defecate on floral surfaces during foraging and that composite flowers with a large area of disk flowers were the most likely to have feces on them. Our results point to defecation by bumble bees during foraging as a potential mechanism for inoculation of flowers with pollinator pathogens and suggest that flower shape could play a significant role in inoculation.


Assuntos
Abelhas/fisiologia , Defecação , Flores/anatomia & histologia , Animais , Comportamento Excretor Animal , Magnoliopsida , Polinização
20.
Proc Biol Sci ; 286(1894): 20182499, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30963859

RESUMO

Emerging infectious diseases (EIDs) are a global threat to honeybees, and spillover from managed bees threaten wider insect populations. Deformed wing virus (DWV), a widespread virus that has become emergent in conjunction with the spread of the mite Varroa destructor, is thought to be partly responsible for global colony losses. The arrival of Varroa in honeybee populations causes a dramatic loss of viral genotypic diversity, favouring a few virulent strains. Here, we investigate DWV spillover in an invasive Hawaiian population of the wasp, Vespula pensylvanica, a honeybee predator and honey-raider. We show that Vespula underwent a parallel loss in DWV variant diversity upon the arrival of Varroa, despite the mite being a honeybee specialist. The observed shift in Vespula DWV and the variant-sharing between Vespula and Apis suggest that these wasps can acquire DWV directly or indirectly from honeybees. Apis prey items collected from Vespula foragers were positive for DWV, indicating predation is a possible route of transmission. We also sought cascading effects of DWV shifts in a broader Vespula pathogen community. We identified concurrent changes in a suite of additional pathogens, as well as shifts in the associations between these pathogens in Vespula. These findings reveal how hidden effects of the Varroa mite can, via spillover, transform the composition of pathogens in interacting species, with potential knock-on effects for entire pathogen communities.


Assuntos
Abelhas/parasitologia , Interações Hospedeiro-Patógeno , Vírus de Insetos/fisiologia , Vírus de RNA/fisiologia , Varroidae/fisiologia , Vespas/virologia , Animais , Abelhas/fisiologia , Abelhas/virologia , Cadeia Alimentar , Havaí , Interações Hospedeiro-Parasita , Vírus de Insetos/genética , Comportamento Predatório , Vírus de RNA/genética , Vespas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...